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ABSTRACT

This initial report describes work on the Restructurable VLSI
Research Program sponsored by the Information Processing
Techniques Office of the Defense Advanced Research Proj-

ects Agency during the two semiannual periods, covering
1 April 1979 through 31 March 1980.
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RESTRUCTURABLE VLSI PROGRAM

I. INTRODUCTION AND SUMMARY

The objective of the Restructurable Very Large Scale Integration (RVLSI) Program is to

develop and demonstrate techniques which will make possible integration of large systems as

single-package modules. We are developing techniques for restructuring large-area IC chips

after fabrication in order to provide access for testing, perform defect avoidance and custom-

ization, and reconfigure a system while it is being used. The DARPA-sponsored program wbicb-

*.aireported here is focused on development or architectural concepts for data- and signal-

processing systems for RVLSI implementation, development of design aids for unique RVLSI

design problems, and development of test techniques suitable for RVLSI applications. A com-

panion Air Force-supported program in technology development and fabrication of laýe-area

RVLSI is reported on in the Lincoln Laboratory Advanced Electronic Technology.Quarterly Tech-

nical Summaries.

Since this is the first report on this progrsam,'an overview oi the goals and proposed tech-

niques is given in. Sec. II.

In Sec. III the functional requirements on programmable connections or links are presented

and three types of links are described and compared. In the near term the emphasis will be on

laser programmed links and links made from standard logic circuitry; a longer-term goal is
development of an electrically programmable nopvolatile link.

In Sec. IV we desci-ibe a hardware description language designed for efficient description of

"hierarchical and iterative structures of digital circuits. Since each RVLSI chip may have a dif-

fererv wiring configuration, complete automation of the signal routing process is essential.

Solutions for this problem are presented in Sec. IV.

Results of an investigation of mapping a regular locally connected array of processing ele-

ments onto a physical array with defective elements are presented in Sec. V. An integrator for

a spread-spectrum packet radio receiver has been chosen for a first implementation. hThe sys-

tem and its partitioning into cells is described and a scheme for assignment of cells is presented.

SII
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II. PROGRAM OVERVIEW

A. INTRODUCTION

Digital LSI technology is rapidly evolving toward whole wafer systems in which the combined

effects of smaller feature size and larger chip area will permit the design of monolithic struc-

tures that may be two to three orders of magnitude larger in gate count than existing LSI prod-

ucts. The vast amounts of computing and signal-processing power that will be possible on single

substrates will allow for the introduction of more sophisticated and effective communications

and sensor systems onto military platforms that are currently limited by constraints of equip-

ment size, weight, and power consumption. In addition, a quantum jump in monolithic circuit

capability has significant implications in terms of cost, reliability, and maintainability.

The increased level of integrated system complexity afforded by larger chip areas and

smaller device geometries will require entirely different methods of system design, fabrication,

.,ad testing than are currently used in the integrated circuit industry. For example, a major
constraint on the complexity of present day devices is the requirement that a chip be entirely

free of defects in order for it to be considered useful. A more effective design and fabrication

strategy in more complex systems would be to anticipate a given defect density and to provide

mechanisms by which the defects, once identified, could be circumvented through redundant cir-•, ~cuitry. Increased complexity also implies more extensive testing requirements, both to validate

the functional integrity of logical modules for which there may be no direct access from the chip ,

periphery and to identify defective cells in order that they may be selectively avoided. The lack

of suitable VLSI testing and defect avoidance techniques is a major obstacle to the accelerated

development of large-area high-density integrated circuit technology.

B. PROGRAM OBJECTIVES

The Lincoln Laboratory program in Restructurable VLSI is based on a concept of program-

mable conducting paths that can interconnect individual circuit cells both for initial circuit test-

ing and defect avoidance, and for subsequent modification of the basic system architecture to

accommodate different applications or changing user needs.1 Although the immediate benefits

of our restructuring technology will be in the areas of VLSI testing and defect avoidance, we

bel( ,e that the ultimate value of the concept is that it permits physical configuration to be a

programmable attribute of integrated circuitry. When combined with conventional software pro-

grammability at the cell level, restructurability provides an additional layer in a programming

hierarchy that is ideally matched to a modular VLSI environment. Figure II-i illustrates the

concept in the context of a signal-processing application. Basic cells are of MSI to LSI com-

plexity and are treated as elemental units for purposes of testing and defect avoidance. Two

generic cell types are shown, i.e., memory (M) and computation (C), which in turn may be spe-

cialized or programmed for specific tasks via conventional software methods or programming

of connections on control pins. After testing, good cells are interconnected through program-

mable conducting paths to produce a final system - in this case a 64-point pipeline FFT. The

same programmable paths also provide access to individual cells for testing purposes. A chip

(or wafer) will include enough cells of each generic type so that for the expected cell yield some

reasonable percentage of chips can be wired up from the good cells.

I; I
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Fig. II-1. Restructurable VLSI using programmable links.

The use of restructurable logic for customizing large-scale chips or wafers for specific

applications is of special interest in military contexts for which production volumes may be in-

sufficient to amortize the initial design costs of complex VLSI chips, but for which wafer-scale

integration is critical for reasons of size, weight, and power consumption. Restructurability

offers the potential to tailor a single design to a variety of different system applications with re-

sulting reductions in design time and cost for custom integrated systems. Restructurability also

offers the potential for logic reconfiguration after deployment in the field. This capability could

allow machine architectures to be modified dynamically to match individual processing tasks or

to be upgraded in response to new system requirements.

A major long-term program objective is to develop a powerful new class of flexible/pro-

grammable signal-processing architectures matched to the modular nature of high-density large-

area VLSI circuitry. Our basic concept involves the use of restructurable conducting paths for

interconnecting individually programmable modular elements. Although such structures may

not always be suited to general computational problems, complex signal-processing tasks can
usually be decomposed into sets of relatively simple interconnected modular functions. For

example, one can envision a very direct relationship between a signal-processing block diagram

and the actual modular decomposition of the process in a Restructurable VLSI machine. In order
F to achieve this long-term objective, we require a better understanding of the functional require-

ments and internal architecture of the basic system modules, and we need to understand the

limitations and trade-offu between various reconfigurable interconnection topologies. We also

will need to cf •,velop data-processing architectures matched to RVLSI since most potential whole

wafer systems, such as vocoders, will require both signal- and data-processing capability.

I4
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4An understanding of the relatior ips between cell complexity and amount of restructurable

interconnect needed for testing and defect avoidance is required. Cells must be large enough so

that the ratio of logic to cell interconnect areas is reasonable, but smah enough to result in

satisfactory yield. Cell size also will be determined on the basis of efficient partitioning for

testing. A very appealing concept is that of integrating appropriate test and reconfiguration con-

trol circuitry directly onto a wafer, and providing a self-testing and restructuring capability

that allows the system to achieve operational status without external manipulation. The design

of a methodology for automatic on-wafer testing is a major long-term goal of our Restructurable

VLSI program.

C. TECHNICAL BACKGROUND

We have partitioned the process of Restructurable VLSI design, testing, defect avoidance,

and reconfiguration into four major steps called placement, routing, assignment, and linking.

, Placement refers to the physical location of basic cell types on a chip or wafer. Routing is the

process of designing metal paths of various lengths and orientation such that they can b• used

in a flexible way for custom interconnection of the various cells. After a chip or wafer is fab-

ricated the testing process identifies usable cells and these are then associated with individual

logic modules. We call this process assignment. Cells themselves may be customized after

the assignment procedure; e.g., if they are programmable logic arrays, read-only memories,

or nested clusters of Restructurable VLSI circuits. Finally, linking is the process of inter-
connecting the various metallization routes to form appropriate conducting paths between cells.

The above discussion assumes that interconnect buses are partitioned into fixed lengths during

fabrication. An additional degree of restructuring freedom is provided if arbitrary metal seg-

mentation is possible after wafer fabrication (e.g., by using a laser zapper).

I Since the locations of defective cells will be unique to each chip, the placement strategy

S~must be designed such that there are appropriate numbers of each basic cell type conveniently
S~located on the chip. The routing must provide the greatest degree of interconnection flexibility

S~given the expected cell yield and the functional requirements of the subject design. Because of

; the limited ability of a given placement and routing to cope with all possible defect patterns or

,, machine topologies, occasions will arise in which there may be sufficient numbers of functioning

cells to complete the design, but a linking cannot be found to interconnect them. If the chip con- {
tains relatively large quantities of identical cells an alternative assignment scheme might be ,

found for which a valid linking exists. The processes of assignment and linking are thus seen

to be mutually interactive. A similar conclusion can be drawn for the placement and routing |

functions, but these are coupled through the cell yield statistics rather than by specific defect
patterns.

S~A fundamental difference between conventional logic-driven path switching and restructurable

linking is that the latter can be expected to be exercised re].atively infrequently compared to the

rates at which data may be switchied in a given machine. This affords a wide degree of flexi-

• bility in the choice of programmable link technology, since the links need not be restricted to

the same family of switching elements that constitute the bulk of the system. Candidate ap-

proaches include the use of once-programmable fusible links similar to those used in read-only

memories, laser-based methods in which connections can be permanently broken or created,

and a variety of transistor switching designs that require differing amounts of additional cir-

cuitry for programming purposes and/or for nonvolatile retention of state information,

II



An important goal in our research is to assess the utility of the various programmable link-

ing approaches for testing, defect avoidance, and system reconfiguration. Each of these imposes

a different set of requirements and constraints on the types of links that can be used. We expect

that the best compromise between system flexibility and complexity of the restructuring circuitry

will be achieved through the use of more than one linking tec'nique in a given design. For ex-
ample, if the objective were simply defect avoidance or initial customiz.•tion of the machine ar-

chitecture, then restructuring would only occur in the last stages of the manufacturing process

and links would need to be programmed only once. The simplicity, electrical efficiency, and

nonvolatility of fusible or laser-programmed links are well matched to the customization and

defect avoidance requirements. On the other hand, testing might require that conducting paths

be reprogrammed several times in order to gain connectivity to various cells in time succession,

but link nonvolatility would not be required. Flip-flop controlled AND gates using the same cir-

cuit technology as in implementing cell logic can provide such links to test nodes. These links

require additional chip area for control paths and storage of state information and would there-

fore be used sparingly.

The concept of architectural reconfiguration is best realized with links which are both non-

volatile and reprogrammable throughout the lifetime of the chip. This application has motivated

us to explore new linking methods in which the required features can be achieved using small

geometry, easily programmed devices, Our work in nonvolatile MNOS links is directed at this

problem area.

6
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III. RESTRUCTURABLE INTERCONNECT

A. INTRODUCTION

Restructurable interconnect is a new technology which is crucial to the viability of RVLSI.

Restructuring of cell interconnect is done through an array of metal buses anu programmable

links. The buses and links must be usable for test access, defect avoidance, reconfiguration,

and customization with acceptable electrical performance and minimum consumption of area and

power. Good yield is essential since it may be difficult to make substitution for defective links

and buses. The important functional characteristics of a link are whether it can be programmed
more than once; and if it is rteprogrammable its speed of response to programming signals and

whether it holds its programmed state without power.

The functions for which links are used impose differing requirer.ents on them as shown in

Table III-i. Two forms of reconfigu ration are listed: "dynamic" must be done in a time com-

parable (within several orders of magnitude) to the system clock period while "occasional" de-

scribes reconfiguration which can be done more slowly. Some measure of reprogrammability

TABLE Il1-1

FUNCTIONAL REQUIREMENTS ON LINKS

Speed of
Reprogrammability Programming Nonvolatility

Defect Avoidance No - Yes

Customization No - Yes

Test Access Yes Slow No

Dynamic Reconfiguration Yes Fast No

Occasional Reconfiguration Yes Slow ?

may be required for defect avoidance where the final testing can be done only with programmed

interconnect. A combination of once-programmable normally open and normally closed links

may suffice. It is assumed that the connectivity information for dynamic reconfiguration is

stored separately (on or off the wafer) so that link nonvolatility is not required. The require-

ment for nonvolatility for occasional reconfiguration is application dependent.

The three types of links which are being developed are described in the following sections.

B. ELECTRICALLY REPROGRAMMABLE NONVOLATILE LINK

The ideal link is nonvolatile and electrically reprogrammable an unlimited number of times.

An electrically alterable resistor such as caa be built with a chalcogenide material is one possi-

bility, but such a two-terminal device presents problems in isolation between the control and

signal lines. An MOS pass transistor with charge storage in the gate dielectric does not have

this problem. Either MNOS or FAMOS devices can be used in this way. Both the resistor and

pass transistor are bidirectional devices but their series resistance may seriously limit speed.

7- -;



Figure 11-1 shows a link comprising an MNOS transistor and a bipolar transistor. The MNOS

transistor is used as a pass transistor and the bipolar transistor provides power gain. The

bipolar transistor introduces voltage shift on the signal line which limits the number of links

which can be connected in series and the unidirectional nature of this link complicates the de-
sign of the restructurable interconnect. These devices have the disadvantage of requiring spe-

cial fabrication steps and control voltages (30 V) larger than normally used with logic circuits.

Figure 111-2 shows how the MNOS and bipolar transistors can be m9rged to minimize link area.

This link is being fabricated along with a test section of a programmable logic array where these

links are used to make an electrically alterable PLA. In the PLA unidirectionality is not a dis-
advantage and the bipolar device allows fast switching on the heavily loaded lines in the AND and
ORý arrays. The link is about (10X)) in size with X = 3 W. in this implementation. A circuit vari-

ation described in the literature which uses low voltages for selection and an unswitched high

voltage has been examined as a possible alternative to the current approach.

C. ONCE-PROGRAMMABLE LINKS

The simplest link is a once-programmable connection such as the fusible link used in PROMs.

We call this link, where programming removes a connection, deletive. In an additive link pro-

gramming makes a connection. We propose to program both types with a laser beam. Removal

of mete.1 with a laser is done routinely to correct defects on IC chrome masks. Addition of a
connection could be done by melting through the insulation at the crossing of two metal lines, an-

nealing of amorphous silicon to change it to a low-resistance connection, or formation of a con-

nection in a chalcogenide. Experiments are in progress on forming connections in two-layer
metal.

The laser scheme reduces chip complexity since no on-chip access circuitry is required but

can be used only prior to packaging. Once-programmable links have excellent ON/OFF resis-
tance ratios and small size and thereforc could be used to program the segmentation of intercon-

nect metal which would greatly simplify the routing of signals on a chip. Where a limited amount
of reprogrammability is required, additive and deletive links can be combined. Ideally, this

link does not add any area to the interconnect structure because the metal lines themselves are
being connected or opened but second-order effects will undoubtedly dictate that some additional

area be used.

D. ELECTRICALLY REPROGRAMMABLE VOLATILE LINKS

A logic gate controlled by one bit of storage is an electrically alterable volatile link. It can
be switched at high speed and provides signal gain. Fabrication of this link is identical with fab-

rication of standard logic devices. Of the links considered this one consumes most chip area

and power; however, for cases where a number of signal lines can be controlled as a group one

FF can control multiple gates, thereby saving space and reducing access circuitry for link con-
trol. A circuit comprising a CMOS FF and tri-state gate circuit was designed and laid out in a

2form suitable for implementing such a volatile link. The area of the link was about (55A) with
A = 3 pm.

E. COMPARISON OF LINKS

Table 111-2 presents a comparison of the three types of links where the reprogrammable

nonvolatile column characteristics are representative of the merged MNOiF--'polar device. For



TABLE 111-2

COMPARISON OP THREE LINK TYPES

Reprogrommabl5, Reprogrammable,
Nonvo!otilIe Once- Programmable Volatile

Areo (I CX) 2  Small (55X)
Power Consumption Smaller None Larger

Access and Control High Voltage None Standard logic
Circuitry

Programming Speed Slow Fast

Bidireciional No Yes No

Fabriccition Special Ston~ard ()Standard logic

Signal Transmission Unidirectional, Bidirectional, Unidirectional1,
gain low impedance gain

to the others. Results of ongoing device development will determine if a reprogrammable non-

volatile technique is viable.

CONTROLi I

Fig. IllII Nonvolatile programmablecOTL
link - circuit.
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Fig. 111- 2. Nonvolatile programmable link - plan view.F9



IV. DESIGN AIDS FOR RESTRUCTURABLh VLSI

A. INTRODUCTION

Our approach to the design of a Restructurable VLSI system has three phases: (1) system

and logic design with emphasis on testability and partitioning into cells, (2) physical design of

the chip, and (3) final restructuring of the fabricated chip based on test results. In each phase

there are aspects of the design process uniquo to Restructurable VLSI. During this period we
Ihave develop..ed a hardware description language especially well suited to design with collections

oand encourage the designer to think in these terms. This language

and development of a translator are described in the next section. An important problem in the

restructuring process is that of finding signal paths between good cells on the interconnect pro-
Svided. This is called the linking process because the solution specifies which links to turn on

or off. Development of a research linker is described in Sec. C. Work on the assignment prob-

lem, that i0, binding of logical cells to good physical cells, is described in Sec. V in the context

of specific RVLSI applications.

B. HIERARCHICAL AND ITERATIVE STRUCTURE DESCRIPTION
LANGUAGE (HISDL)

1. Introduction

The specification of interconnections of components in a system of VLSI complexity and the

subsequent transformation of those specifications to connection or net lists are tedious and error

prone when done manually. When a language that is sufficiently rich in constructs for the formal
description of such specifications is used, then the description is easily written by the designer
and the generation of connection lists can be done automatically. For Restructurable VLSI we

need a language for the description of hierarchical and iterative designs. At present, description

of behavior is of secondary importance.
3 4Many computer hardware description languages have been developed. ' Until recently the

emphasis in these languages has been the description of the behavior and register level structure

of a computer. Some languages that facilitate the specification of interconnections of compo-

nents (i.e., networks) at a high level have been proposed and are being or will be implemented.

For example, AHPL III (Ref. 5) is an extension of AHPL (Ref. 6) to handle the specifications of

structures for describing a network of MSI parts. However, it is still a behavior-oriented lan-

guage not well suited to explicit interconnect description. Another language that has been studied

as a candidate for the structure description language is CASL (Ref. 7). However, CASL is cur-

rently being implemented and the present emphasis is not the generation of connection lists. A

third language, SDL (Ref. 8), supports hierarchical descriptions of structures. However, SDL

does not have constructs for specifying replication of interconnections of substructures. SCALD

(Refs. 9- 11) is a graphics--based hierarchical digital logic design system which does generate wire
lists. The diawback with this system is that it requires graphics terminals as input devices and

it is unclear whether arrays of structures of more than one dimension can be conveniently spec-

ified as a structure.

No structure description language with textual input that meets our needs is available.

Therefore a language has been defined and we are writing a translator which generates wire ,

lists. The language facilibites the hierarchical description of interconnection of structures and

also allows the uier to specify replication of structure interconnections. Due to these two main .

PRECEDIN)j PAGE BLA4N•_0T FILAW
-;L . . . . .. . . . . . . .



features of the language, it is given the name HISDL (Hierarchical and Iterative Structure

Description Language). The language is designed strictly for the description of interconnections

of structures and is oriented to the design of a network of components which may be of LSI corn-

plexity. Structures are modular, in the sense that components are viewed as copies of some
user-specified structure types. HISDL does not describe the behavioral properties of structures

although it could be used to describe interconnsction of cells with known behavior and thereby

serve as input to a simulator.

Section Z describes the features and constructs of HISDL together with an illustrative ex-

ample. The implementation details of version i of the HISDL translator and the current state

of implementation of the translator are given in Sec. 3. From the experience gained thus far,

some plans for modifications, extensions, and enhancements of the translator have been devel-

oped and are described in Sec. 4. The syntax of HISDL is given in an appendix.

S2. Language Description

The system to be described in HISDL is viewed as a hierarchy of interconnections of corn-
ponents. Each component is connected to other components at the same level by connecting the

appropriate ports of the structures together. The details inside each component at a given level

in the hierarchy need not be known when the connection is made. It is the user's responsibility

to ensure that the connections are compatible with the behavior of the structure.

A component is a copy of a structure type which serves as a template !or making the copy.

There is always a name and a structure type associated with a component. Since a component

can be part of an array of components, its name can have array subscripts. Each structure

type is defined by a structure type definition. Figure IV-i shows the block diagram represen-

tatior. of a structure (a i6-bit adder) and its HISDL description is given in Fig. lV-2. A struc-

ture type definition ha, a header (line i of Fig. IV-Z) which contains the keyword STRUCTURE

followed by the structure type name and a list of parameters. These parameters are the names

of the I/O ports of the structure type. Following the header are the 1/O declaration lists (lines

2 and 3). Line 2 declares that the structure type has two input ports called AUGEND and

ADDENr>, both with path widths of i6 and the individual lines of the ports are numbered 0 to i5.

Line 3 declares that the port, SUM, of path width i6 is an output port. The list of components

used in this structure type is given in line 4 which declares that the components are ADDHIGH

and ADDLOW of structure type ADDERS. Lines 5 to i5 define the interconnections of the com-
ponents. Each line is a connection list representing a set of ports to be connected together.

Each port has a component name (optional) followed by a port name. The component and port

names of a port are separated by a period. If the component name is absent, then the port be-

longs to the structure type being defined. Line 16 terminates the structure type definition. The

S-bit adder, ADDER8, is defined to be a cell type. Logically, a cell type is the lowest-level

structure type in the structural hierarchy and the special keyword CELL is used. There need

not be any distinction between cells and structures as far as the logical connections are con-

cerned. However, it is prudent to provide flexibility for specifying structures that are prede-

fined and their descriptions exist in a library. Such structures may represent the lowest level

in the hierarchy that the user is interested in.

One of the important features of the language is the FOR construct. With this construct

the user can easily specify the interconnections of an array of components. The maximum num-

ber of dimensions of an array in HISDL is four allowing one to specify the structure of a

four-dimensional array of components.

12
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Connections of structures are specified as lists of ports. Each list can optionally have a

user specified name. A connection list is a list of ports delimited by special characters like
"/"and braces. Besides using the connection list, connection of components can be specified as

component invocations as illustrated in Fig. IV-3 which describes the samne structure given in

Fig. IV-1. A component invocation is very similar to a procedure call in a general programming

language. By specifying the name of a component followed by a list of ports which has a one-to-
one mapping to the parameter list of the component's structure type, the user can connect struc-
tures together. The translator will generate the connection lists from the component invocations

provided.

A typical 11 ISlJL prograin is a list of structure or cell typt- definitions. One of the structure

type definitions is the highest level or root structure representing the starting structure type.

The translator will use the root structure to obtain the net lists for the whole structure defined.

The net list for the whole program is generated after all structure and cell type definitions are

expanded. In the first version of the translator, the first structure or cell type definition en-

countered in the HISDL source program is th>i root structure.

3. Implementation of the IiISDL Translator (Version 1.0)

The HISDL translator currently being implemented can be broadly divided into two parts -

the parser and the data base. A language design tool, LANG-PAK (Ref. 12), is used to imple-

ment the translator. The syntax of H-ISDL is first defined in the LANG-PAK meta-language

which is similar to the Backus-Naur Form (BNF) of language specification. The mneta- language

allows one to specify codes for semantic actions to be taken as the various constructs are parsed
and processed. The semantic codes are "compiled" by a subroutine called the semantic com-
piler into operation codes to drive the semantic machine, another subroutine. The interface be-

tween the parser and the data base is the semantic machine which is coded to call the appropriate

data-base subroutines as the HISDL statements are processed. All the LANG-PAK related sub-
routines have been implemented and a test version of the translator for syntax checking purposes

is currently running under VM/370 CMS. The version of LANG-PAK that is installed is a

FORTRAN version.

The translator creates a data base as it parses the input statements. The data base is an

internal representation of the structure described by the HISDI, program. It is used to generate

the connection lists. About ten FORTRAN arrays are used to implement the data base at the

current stage. A master directory is used for accessing the data base using names, i.e.,

structure/call type names, component names, port names, names of connection lists as well as

names of FOR variables. The subroutines for storing the 1/O and component declaration lists

information have been implemented. There is a table for each structure/cell type defined.

Another table contains information for all components declared. The entries in the tables are

pointers to other tables (including the tables themselves). All 1/0 port names and path widths

are stored in common arrays and pointers are used to access the right list (or lists) of I/O port

names for the given structure/cell type or component. It is common for the ports in a structure

definition to have the same path width specifications. Thus to save space, all path width speci-

fications (as well as array dimension specifications) are stored in a common storage area and

each entry in the area is a unique specification. Thus it is possible to share these specifications

among many ports as well as array names. This is true, also, for names; that is, all names

are stored in a common area and the entries are all unique. Thus if there are two instances



of the same name being used, the appropriate entries for the name contain pointers to the same

location in the same common area.

Work is in progress in implementing the data-base subroutines for storing information on

connection lists and component invocations and in the development of an algorithm for generating

the net lists using che information in the data base. The organization of the connection list and

component invocation information in the data base is dependent on the net list generation algo-

rithm. The output of the translator will initially be the n!;t lists and tables of component and

port names. The tables are used in coni ,nction with tlýe net lists to aid the user in associating

the net lists with logical component anC port names of the program.

A number of HISDI. programs ver. syntactically checked using the test version of the trans-

lator. For a program of 135 lines, the CPU time was Z.66 s for the translator running under

CMS on an Amndahl 470/V7. Besidcs syntax checking, a listing of the program was generated

together with a special file. The file was used for debugging purposes and contained the con-

tents of the data-base arrays and the actual parameters of the data-base subroutines called.

4. Modifications, Extensions, and Enhancements of HISDL

7he experience gained in the use of the test version of the translator has provided some in-

sights into extensions and enhancements of HISDL. One proposed modification to the language

is the replacerrent of the list of port names in the structure type definition header with the I/O

declarations. This removes the redundancy that now exists between the port names in the I/O

declarations and the list of port names in the structure type definition header and is consistent

with CONLAN (Refs. 13-15).

For more efficient specification of arrays of interconnected structures, a conditional con-

struct like the IF... THEN... ELSE should be provided. This addition to HISDL will make it

easier for the user to specify special connec+`on conditions, for example at the edges of an array

of interconnected structures. The conditional construct when used in conjunction with connection

list specifications will ullow the inclu-.on or exclusion of certain connection lists when the spec-

ified condition holds (or does not hild). In the first version of HISDL, the special connection at

the edges of an array of iater onnected structures can be specified using multiple FOR

constructs.

Other language extftnsions may be desirable. For example, the translator can be extended

to print the hierarchy of the structure described or to generate its graphical equivalent.

Furthermore, the translator can be modified to create a more permanent data base which can

be used over and over again. This will allow the user to "build" up a system description from

many different HISDL program runs, each run describing a part of the system. With this capa

bility, users can share the common data base.

C. RESEARCH LINKERS

1. Introduction

After a RVLSI wafe'.' is tested and an acceptable assignment is made, the desiLed cell-to-

cell connections are rr.ide by setting links. The process that finds the paths for all ýte specified

connections on a previously defined pattern of interconnect and links is called linking. It is anal-

ogous to the process of routing in the design of ICs and PCBs.

A linker operates i, a world of pins and segments. Pins are the I/O ports of a cell. A

segment is a physical ccnoicting line that is iaid out on a channel, which is the space between
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rows of cells. A szegmnent does not need to run the full length of the channel. several short seg-

ments may be collinear. The overall connectivity possibilities of the interconnect pattern de-
pend on the density and length of the segments, as well as where links are located. A linker

operates on two data bases. The first is taie pin-to-segment and segm ent-to -segment connec-

Ls tivity information. The second is the list of pins to be connected.
our current linkers are experimental or research linkers. They are being used to investi-

gate both linking heuristics and to study the effectiveness of different interconnect patterns for

certain applications. This use as a research tool demands the ability to work with a variety of
link and segment characteristics, whit;,,. i turn requires a variety of cost functions. In order

for the cost function to be easily modified it is separated from the search algorithm. This al-
lows all paths to be found followed by application of the cost function to find the least cost path.

Typical items that would be included in the cost of any path would be the total number of active

links on the path, the maximum number of links in series n a path, the physical length of the

path, and the number of links made unusable for future paths. The cost of all these items would

be technology-dependent.I
We have programmed and are operating three research linkers. They are an exhaustive

linker, a cluster filter followed by the exhaustive linker, and a graph reduction linker. All are
written in PL/1 and are running on the Amdahl 470/V7. Connectivity information can be ex-
tracted from either a Calms, layout or a textual description of the positioning of cells, segments,

and links. The linkers, as written, find solutions for multipin nets through bidirectional links.

If unidirectional links were used only smdii -ihaa~ges to the present data structures and search

algorithms would be required.

2. ExYiaustivp Linker

The exhaustive linker finds all the possible solution paths of a specified connection and ap-

plies a cost function to select the best path. in this method there is a clear separation of the

path search and the application of the cost function in agreement with the goals of a research

linker.

For each net, the exhaustive linker does a depth first search through the various path pos -

sibilities by expanding from an arbitrarily chosen pin through any valid combination of segments
until the path contains all the pins in the net. The path's cost is measured at this point and is
kept if it is smaller *han the current minimum cost path. The search continues through different

path permutations until there is no possibility of finding a cheaper cost path or until an arbitrary

cutoff point is reached.

Although the exhaustive linker will find all the possible paths, it does so at high cost. We
experienced a growth in time required to find an optimal solution that was exponential with the

number of pins in a net and the maximum number of links in se~ries from one pin of the net to

another pin. The following tabulation shows this growth:

Links Time
Pins (series) (S)

2 2 4.0
3 2 4.9
2 4 10.0
3 4 21.4

-4 282.0
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3. Cluster Filter

Tile cluster filter was developed to redUCE thle number of segments and thus the search space

of the exhaustive linker. Those segments that have no chance of being in a minimum link solu-

tion path are eliminated from further conisideration and tile resulting group of valid segments is
then passed to the exhaustive linker.

The cluster filter begins with all the pins of the current net considered as "roots' of sepa-I
rate equivalence classes. For each pin, a one-link expansion finds all the available segments and

pins that can be reached from that pin by going through one link and these segments and pins are

placed into that pin's equivalence class. This one-link expansion proceeds for each equivalence

class in turn until two or more classes are found to have some segment in common. The Venn-

like diagram of Fig. IV-4 helps to illustrate the situation. The two large circles represent two

equivalence classes and con+ain many segments and pins. The smaller "root'" circles are subsets

of the equivalence classes. The paths are a group of segmenyts that connect the "lroot"t to the comn-

mon segments. These paths usually contain only a small portion of the set of segments and pins

that make up the equivalence class. At this point the segments in common, the "root" of each in-

tersected equivalence class, and the paths are merged or clustered to form a "root" of a new

equivalence class. Those equivalence classes that did not intersect on the last iteration continue

to expand. The process of expansion continues until one equivalence class is formed that contains

all the pins. That set is then passed to the exhaustive linker to find the minimum cobt path.

Figure IV- 5 shows a s imple layout on which pin I of cell 00 (00. 1), pin 2 of cell 0 1(01. 2) and

pin 3 of cell 13 (13.3) are the pills of a net. Following the procedure outlined above, pills 00.1,

01.2, and 13.3 are made the "roots" of their own equivalence classes A. B. and C. respectively.

After a one-link expansion A contains pin 00.1 and segments 1, 3, and 5; B holds pin 01.2 and

segments 1, 2, and 6: and C holds pin 13.3 and segments 8, 10, and 12. Since A and B have

segments 1 and 3 in common, they are merged. Segments I and 3 with pins 00.1 and 01.2 form

the "root" of the new equivalence class AB. There are nn segments in common with C at this

point. Another one-link expanision adds segments 5, 6, 13, 14. and 15 te AB3 and segments 15

through 18 to C. Segment 15 is common to AB and C. The path from segment 15 to the "troot"

of C is through segment 12 and there is no path to the "root" of AB, since it already touches the

"root." The new equivalence class ABC is formed containing all three pins and segments 1, 3,

12, and 15. The exhaustive linker need only consider four segments when used with the filter,

vs eighteen segments without the filter. In larger layouts the savings are even greater.

An implied cost criterion was introduced into the search process by this heuristic filtering

algorithm, namely That only paths with the minimum number of links would be minimal cost.
This reduction in flexibility bought a large gain in speed. Use of the cluster filter followed by

the exhaustive linker made an o rde r-of- magnitude improvement in speed in most cases, but the

time needed still grew exponentially as shown in the tabulation below.

Links Time
Pins (series) (s)

2 2 2.9
3 2 3.0i2 4 3.8

3 4 5.4
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4. Graph Reduction Linker

impressive time reductions over the other linkers. It takes a group of segments and pins, pres-

ently the output from the cluster filter, and forms a directed graph. The pins and segments are
the nodes in the graph and the links connecting them are the arcs of the graph. The graph is

built by starting at an arbitravy root pin, and traversing through links and segments away from
the root pin until all the segments and pins are in the graph. A graph built this way could con-

ceivably be quite complicated with many possible paths that connect the pins. For example,

Fig. IV-6 shows a partial layout iin ,which the segments that have survived the cluster filter have

been darkened. A graph built from these segments starting from pin 01.i looks like Fig. IV-7.

Those segments or pins with unique connectivity possibilities are represented by circular nodes,

while those segments with identical connectivity are grouped together in rectangular nodes.
This graph can be reduced and a solution found by recognizing three things. First, pins are

* always needed in any solution path and therefore are exempted from the search process. Second,

at a specific level in the graph some segments may have identical connectivity possibilities. i.e.,

touch the same segments, and/or pins, and can be reduced to one minimum cost segment. For

example, in the graph of Fig. IV-7, segments 37, 38, 41, 44. and 45 have identical connectivity.

However, in the full layout it is found that segments 37 and 38 cost less by any cost crite-

rion than any of the others. One of the two is chosen, since they are equivalent. By applying

the same procedure to every rectangular node in the graph, the example graph is reduced from

35 possible nodes to 15 nodes. The third thing to notice is that certain segments are always

needed in any solution path; these can be seen as "constrictions" in a graph. In the example this

would happen if all the segments in the two rectangular nodes with segments 70 and 37 had been

previously allocated by the linker. Then the minimum cost segment in the node with segment

48 would be a constriction. The graph reduction linker takes this into account by not using this

segment in the enumeration process. This divides the graph in two, which allows the linker to

consider the smaller problem of finding optimum paths through the subgraphs.

the iiaigsm emnsfrmcnieainadrqiig test ei h ouin

tegraph redun.tion linker can often substantially reduce the graph. Then simple enumeration of
all possible paths can be done in a reasonable amount of time. This allows most nets to be linked *

in a fr'action of a second, even if the routes taken are tortuous or the net is multipinned. Some

[ nets, however, cannot be reduced very much and then one sees the customary exponential time

growth. However, the constant is not as big as in the other linkers, because the enumeration or

search process is more efficient. This linker has no implied cost assumptions.

The graph reduction linker is currently being used to test the interconnect pattern of several

layouts. In one experiment a 1Z8-cell layout used for the integrator was tested. Fifty-six nets

F were linked in 10 s. This experiment pr~oved the worth of both the linker and the integrator's
interconnect pattern.

Successful linking may be dependent on the ordering of nets and/or the assignment of cells

on the chip. Unless the interconnect pattern is designed with linkability in mind, such that one

net's linkage does not adversely affect other nets' linkages, the linker may have to be modified
in a couple of ways. Besides presorting the net list, the linker might need the ability to unlink

nets that prevent other nets from being linked, Another modification would reflect the fact that

the assignment and linking processes are interdependent. In the case that no complete linking

could be done for the current assignment, the assignment program would have to do another

assignment using information derived from the linking failure. .
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V. APPLICATION OF RESTRUCTURABLE VLSI

A. INTROI)UCTION

Advances in implementation of digital systems have always influenced system architecture,

the outstanding example being the effect of decreasing cost of memory. We have begun to inves-

tigate ways in which the dramatically higher levels of integration achievable with RVLSI will

influence the way we think of systems. The physical partitioning of RVLSI into cells suggests

a good match with cellular architectures and the uniformity of a systolic array is attractive for

RVLSI implementation. Section B describes how a regular array might be restructured for de-

fect avoidance. We plan to test our concepts and design tools on a series of increasingly chal-

lenging applications. A digital integrator for a spread-spectrum packet radio receiver has been

:,elected as the first application. The system and early design results are described in Sec. C.

B. SYSTOLIC ARRAYS

Architectures with a small number of cell types and mostly local interconnect seem advan-

tageous for implementation in Restructurable VLSI. One such architecture is the systolic array

which is a cross between a pipeline and a single-Jistruction, multiple-data (SIMD) stream ma-

chine. Like a pipeline, each entity in the array repetitively receives data from its neighbors,

operates in a fixed manner on the data, and transmits the transformed data to other neighbors.

Like a SIMD, each identical entity executes the same instruction.

Systolic arrays of cells with 3, 4, and 6 faces are described in the literature. All of these

layouts can be mapped onto an 8-faced cell layout by some log'. I to physical face assignment.

The layout of octagonal cells with nearest neighbor connectivity shown in Fig.V-i. By re-
stricting the number of usable faces to 6 per cell and assigning them as shown in Fig. V-2, the

cell array can be made isomorphic to a 6-faced (hexagonal) cell array. Triangular and rectan-
gular arrays can likewise be formed. When a systolic array is mapped onto an imperfect phys-

ical array then the required connectivity is not strictly local. A link can be inserted into each
line in Fig. V-1 so that by opening links a cell is isolated. In order to route signals around de-

fective cells a redundant rectangular grid of lines can be added. Figure V- 3 shows routing of

a signal around a bad cell in the horizontal direction. From left to right the signal passes

through three normally open links which have been closed.

The redundant grid and the links, however, cannot by themselves repair the logical 3-, 4-,

or 6-faced layout. Cells and their logical faces must also be reassigned. In order to investigate

the effectiveness of this scheme of face reassignment and reprogrammable interconnect an as-
signment algorithm was programmed that would work on a flawed physical array. Simulations

were done to determine what n X 8 logical array would fit on an 8 x 8 physical array for a cell

yielu of 0.81. With logical arrays of triangular, rectangular, and hexagonal connectivity the
average value of n for 20 ýrials was 4.5, 4.5, and 2.3, respectively. Therefore, with an average

of 51.8 available cells, the average utilization for three cases was 36.0, 36.0, and 18.4 cells.

We would expect higher utilization if the array could be configured to an n X n array, but at the

exp(cnse of a more complex assignment program. One general result that could be inferred from

the simulation is that cell utilizat¾2n in a local only (or local mostly) network is very sensitive

to the pattern of defects.
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C. INT'GRITOR

En a spread-spectrum digital communicationr system a correlation is performed between the

received signal and a copy of the code used at the transmitter. The information is in the polar-

ity of the correlation peak. In the presence of noise it may be necessary to perform integration

over a number of repeated transmissions of each bit. Since, in this case, the position of the

correlation peak is not known, the integration must be performed at a number of positions or

bins around the expected peak time. A combined surface-acoustic-wave (SAW) correlator and

integrator has been designed and demonstrated at Lincoln Laboratory. Improved performance

is expected from the combination of a SAW correlator and a separate digital integrator.

Figure V-I is a diagram of such a system. The analog correlator output is converted to a

200-MVlbps bit stream. These bits are grouped into frames of 1024 bits. The integrator samples

a 256-bit window of each successive frame arriving within the integration period, and sums the

corresponding bits of each frame. At the end of an integration period, which may vary from

10 to 102,1 samples, the 10-bit summations for each of the 256 bit-positions within the sample

window are read out.

Figure V- 5 is a functional block diagram of the integrator. The sequence of operations for

the integrator is as follows. An initial preset value is placed on the bus and loaded simulta-

neously into all 256 counters by pulsing the LOAD line. For each frame within the integration

period a sample window of 256 bits is shifted into the count-enable register. After each sample

is shifted into place a COUNT pulse is given which simultaneously increments those counters

with a one in their hit of the count-enable shift register. At the end of the integration period the

contents of all 256 counters are simultaneously transferred to 256 readout buffer registers.

Thus the counters are free for a new integration period while the data from the previous period

are read out. Readout is performed by shifting a single bit down the read-enable shift register

which will enable successive readout buffer registers onto the bus.

Figure V-6 shows the partitioning of the 256-counter array into cells, each containing four

10-bit counters. Within each 8-cell, 32-counter column both the read-enable and count-enable

shifts registers are daisy chained together in a next-neighbor type of interconnection. All other

bus and control signals are routed in parallel to all cells on tha wafer. We desire to choose a

routing and a corresponding assignment strategy to map this logical design onto a physical wafer.

The broadcast and bus lines pose no particular problem. The daisy chain lines, however, limit

the types of assignment strategies usable with a reasonably smah interconnect pattern while pre-

serving the capability for defect avoidance.

An assignment strategy suitable for the class of designs using one-din.ensional next-neighbor

interconnect, like the integrator, has been devised. It is based on the two concepts of skipping

defective cells along a column and migrating extra cells from one column to an adjacent one.

Suppose we wish to implement an M,:-N logical array of cells on a larger X,'Y physical wafer.

We specify two parameters of the strategy, namely SIKIP(I) and MIGRATE(L). We then assign

each logical column to a physical column which has both a sufficient number of working cells and

that has no more than K consecutive defective cells to skip over. If either condition cannot be

met, connection can be made to an extra cell in a neighboring column up to L columns away.

A tentative routing layout has been worked out for the SKIP(i) MIGRATE(l) case which is

expandable for the general case. On a wafer with fixed segmentation each vertical channel is

required to have space for 2K + 2 signal lines, while each horizontal Lhannel is required to have
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space for 2L + 2 signal lines in order to implement each restructurable daisy chain line. If a

technique for arbitrary segmentation at wafer probe time is available, the vertical channel width

can be reduced to K + i tracks. The SKI1-(1) MIGRATE(l) routing therefore requires four ver-

tical and horizontal tracks per channel using fixed segmentation and two vertical and four hori-

zontal tracks per channel using arbitrary segmentation. These routings are able to handle all

fourteen cases of physical next-neighbor connections that arise in SKIP(M) MIGRATE(I). A more

restricted routing can eliminate the rare interconnect cases to sacrifice some yield for lower

interconnect area. It should be noted, though, that for the full routing the SKIP(K) MIGRATE(L)

is only a sufficient condition for assignability and not a necessary one. There are many assign-

ments which though they are not strict SKIP(K) MIGRATE(L) are nonetheless linkable on the
given routing.

Given these routing and assignment strategies, and an estimate of cell yield, we would like
to know what values for K and L are necessary as well as what physical wafer dimensions are

best in order to guarantee good wafer yield. A simple analytical expression can give the expected

wafer yield assuming no contraints on allowable assignments. This formula can be nested to

handle the case of unrestricted SKIP without allowing MIGRATION. More realistic cases of

limited SKIP with MIGRATION are too difficult to handle analytically and require Monte Carlo

simulation. An assignment program for the SKIP(K) MIGRATE(L) strategy is being written at

present. The program will be run repetitively on simulated defective waters to gather yield

statistics. A small nonconstructive simulation program has been written which can handle the

SKIP(K) MIGRATE(l) case.

As the 200-MHz input rate is too fast for current MOS technology, a separate bipolar 8-bit
serial-to-parallel converter will be used to drive eight parallel count-enable registers. Fig-

ure V-6 shows the partitioning of the integrator into eight 32-counter columns. The duration of
the 256-bit window is 1.28 ýs and the windows repeat with a 10.24-Ls period. Thus there are
more than 8 ts for the count, parallel transfer, and preset actions to take place. The stressing

readout case is a short integration period, with a 10-frame integration, the readout transfer

must be at 2.5 MW/s. The only high-speed circuitry is in the count-enable register.

Fig. V-i. A systolic array Fig. V-2. Hexagonal-cell
of octagonal cells, array formed from the

octagonal-cell array.

Z3



REDUNDANT HORIZONTAL
"UPPER" LEVEL

GOOD BAD GOOD Fig. V-3. Routing of a signal around
CE LL CELL CELL a defective cell.

OD NORMALLY CLOSED - OPEN TO ISOLATE CELL

0 NORMALLY OPEN

( NORMALLY OPEN -CLOSED TO ESTABLISH
CONNECTION PCTWEEN GOOLJ CELLS AND
AROUND BAD CELL

SIGNAL

Fig. V-4. Hybrid integrating correlator.

INTEGRATOR ,NTEGRATOR

ri l Cý 0 MAGNITUDE APPROXIMATION

EPOST RCSO

24

A



READ- COUNT-
ENABLE ENABLE

IN IN

t COJN' TRANSFER

CLOCK LOAD

READ-
ENABLE COUNT-ENABLE CLO;K
CLOCK COUNT-ENABLE TRANSFER

I 256
' 10-BIT COUNTERS

READ- COUNT-

ENABLE ENABLE
OUT BUS OUT

Fig. V- 5. Functional block diagram of integrator,

READ- COUNT-

ENABLE ENABLEIN IN

S17

Fig. V-6. Block diagram
of partitioned integrator.

FO.U.R 10-SIT 1~i7

COUNTERS

DATA AND CONTROL



REFERENCES

I. J. I. Raffel, "On the Use of Nonvolatile Programmable Links for
Restructurable VLSI," Proceedings of Cal Tech Conference on Very
Large Scale Integration, January 1979, pp. 95-104.

2. A. Kondo et al., "Dynamic Injection MNOS Memory Devices,"
Jpn. J. Appl. Phys. 19 (1980), Supp. 19-1, pp. 231-237.

3. M. R. Barbacci, "A Comparison of Register Transfer Languages
i for Describing Computers and Digital Systems," IEEE Trans.

Computers C-Z4, No.2, 137-150 (February 1975).

4. S. A. Shiva, "Computer Hardware Description Languages -

A Tutorial," Proc. IEEE 67, No. 1Z, 1605- 1615 (December 1979).

5. F. J. Hill and Z. Navabi, "Extending Second Generation AHPL
Software to Accommodate AHPL III," Proceedings of the 4th In-
ternational Symposium on Computer Hardware Description
Languages, Palo Alto, California, October 1979, pp. 47-53.

6. F. J. Hill and A. R. Peterson, Digital Systems: Hardware Organi-*if zation and Design, Second Edition (Wiley, New York, 1978).

7. G. F. Maxey and E. I. Organick, "CASL - A Language for Automating
the Implementation of Computer Architectures," Proceedings of the
4th International Symposium on Computer Hardware Description
Languages, Palo Alto, California, October 1979, pp. 102-108.

8. W. M. Van Cleemput, "A Hierarchical Language for the Structural
Description of Digital Systems," Proceedings of the 14th Design
Automation Conference, June 1977, pp. 377-385.

9. T. M. McWilliams, L. C. Widdoes, Jr., and L. L. Wood, "Advanced
Digital Processor Technology Base Development for Navy Applica-
tions: The S-1 Project," Report UCID-17705, Lawrence Livermore
Laboratory (1977).

10. T. M. McWilliams and L. C. Widdoes, Jr., "SCALD: Structured
Computer-Aided Logic Design," Proceedings of the 15th Design
Automation Conference, June 1978, pp.271-277. ,

11T. TM. McWilliams and L. C. Widdoes, Jr., "The SCALD Physical
Design Subsystem," Proceedings of the 15th Design Automation
Conference, June 1978, pp. 278-284.

12. L. E. Heindel and J. T. Roberts, LANG-PAK - An Interactive
LanguageDesign System (Elsevier North-Holland, New York,
1975).

13. R. Piloty et al., "CONLAN - A Formal Construction Method
for Hardware Description Languages: Basic Principles,"
to be published in the Proceedings of the 1980 National
Computer Conference, Vol. 49.

14. R. Piloty et al., "CONLAN - A Formal Construction Method
for Hardware Description Languages: Language Derivation,"
to be published in the Proceedings of the 1980 National
Computer Conference, Vol. 49.

15. R. Piloty et al., "CONLAN - A Formal Construction Method
for Hardware Description Languages: Language Application,"
to be published in the Proceedings of the 1980 National
Computer Conference, Vol. 49.

16. H. T. Kung and C. E. Leiserson, "Algorithms for VLSI Processor
Arrays," in Introduction to VLSI Systems, by C. Mead and L. Conway
(Addison-Wesley, Reading, Massachusetts, 1980), Sec. 8.3,
pp. Z71-292.

26I:I

.< . .. .. . , : .....L ,. ,' - U... . : .o . ;, : .



APPENDIX

SYNTAX OI HIERARCHICAL AND ITERATIVE STRUCTURE

DESCRIPTION LANGUAGE

The HISDL syntax description uses the following notation:

(1) The equal sign ,,=" is to be read as "is defined as".

(2) <character>, <letter>, <digit>, and <integer> represent the sets of

characters, letters, digits, and integers (signed), respectively.

(3) A literal is underlined, e.g., STRUCTURE, =, I.

(4) The vertical bar "I " is used to separate alternatives in the definitions.

(5) Braces, for example in (<character>)79, specify the number of rep-

etition that is allowed. The lower limit is always specified and it

can be zero. The upper limit when not specified means that there is

no set upper limit on the number of repetitions. However, for any

physical implementation of the language, there is always an upper

limit be it disk space for the HISDL source file, memory space or
word size limitation. Also the unspecified upper limit may be known

only after the data base has been implemented.

SYNTAX OF HISDL VERSION 1.0

<program> (<comment> I <type definition>) 4

<comment> ( (<character>) 9

<type definition> = (<sheader> <body> <stall>I <cheader> <body> <ctail>)

<sheader> = STRUCTURE <header>

<header> =<type name> ({<parameter list>)')

<cheader> = CELL <header>

<type name> = <name>

<name> = <letter> {<letter>I<d g0t>}7

<parameter list> = <parameter> {, <parameter>) 100-- 0

<parameter> = <.dentifier type>

<identifier type> = <array name type> I <name>

<array name type> = <name> <left bracket> <index specification list> <right bracket>

I for EBCDIC character set

< rfor ASCII character set

b k for EBCDIC character set

<right bracket> = -
<gfor ASCII character set

27
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<index specification list> = <index specification> <index specification>)}

<index specification> =<limitl> (-<limit2>) 0 {;'<increment>})'

<iimitl> i <integer>

<limit2> = <integer>

<increment> = <integer>

<body> = <io declaration> <component declaration> <type definition>

I <connection body>

<io declaration> = <10 type> <io list>

<io type> = INOUTI INOUT

<io list> = <io name type> L, <io name type>) 00

<io name type> = <identifier type> (<path width specification>) 0

<path width specification> =_< <index specification> >

<component declaration> = COMPONENTS <component declaration list>

<component declaration list> = <component list> (, <component list>) 0

<component list> <name type list> -- <type name>

<name type list> <identifier type> {, <identifier type>) 100

<connection body> = BEGIN (<connection statement>) 0 END

<connection statement> = <connection list> I<component invocation> I<for statement>

<connection list> = (<net name>) • <left brace> <pin list> <right brace>

<net name> : <identifier>

<identifier> = <array name> I<name>

<array name> = <name> <left bracket> <index list> <right bracket>

<index list> = <index range> {, <index range>)3

<index range> = <limitl> {: <limitZ>})

!. left brac =Ifor EBCDJIC character set

/for EBCDIC character set

right brace = Sfor ASCII character set

1 '00

<pin list> = <pin name> (, <pin nare> 0

<pin name> = <component name> . <io name>

<component name> = <identifier>

S~<io name> = <identifier> (<Path width>)'0

<path width> : < <index range> >
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<component invocation> = <component name> ((<pin list>),)

<for statement> = <for header> <for body> <for tail>

<for header> = FOR <control variable> = <limiti> TO <limitZ> {BY <increment>) 0

<control variable> = <name>

<for body> = <for connection list>I<for component invocation>I<for body>

<for connection list> = <for name> <left brace> <for pin list> <right brace>

<for name> = <for array name> <name>

<for array name> = <name> ý.left bracket> <for index list> <right bracket>

<for index list> = <for index range> {, <for index range>) 3

<for index range> = <for limiti> (: <for limlt2>) 0

<for limit1> = <for expression>

<for limitZ> = <for expression>

<for expression> = <integer>I<for term> {<op> <for term>)10 0I
<for term> = (<sign>) 1 (<control variable> I<integer>)

<sign> _ +_

<or,> = + I I ,
<for pin list> :<for pin name> (, <for pin name>)' 0 0

0

<for pin name> = <for component name> . <for io name>

<for component name> = <for name>

<for io name> = <for name> (<for path width>)'

<for path width> = < <for index range> >

<for component invocation> = <for component name> ((<for pin llst>) 0

<for tail> = ENDFOR

<stall> = ENDSTRUCT (<type name>)0

<ctail>= ENDCELL (<type name>}'

I
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GLOSSARY

CMOS Complementary Metal-Oxide Semiconductor

FAMOS Floating-Gate Avalanche -Injection MOS

FF Flip Flop

FFT Fast Fourier Transform

HISDL Hierarchical and Iterative Structure Description Language

LSI Large Scale Integration

MNOS Metal-Nitride -Oxide Semiconductor

MOS Metal-Oxide Semiconductor

MSI Medium Scale Integration

PLA Programmable Logic Array

PROM Programmable Read-Only Memory

RVLSI Restructurable Very Large Scale Integration

SAW Surface Acoustic Wave

SIMMD Single-Instruction Multiple Data

VLSI Very Large Scale Integration
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